DCI Growth Planning and the Bandwidth Amplification Effect

As more and more traffic is driven into data centers, in turn pressure builds between and among data centers. This phenomenon is known as the “bandwidth amplification effect,” which essentially means that when X amount of user traffic passes into a data center, it generates many times that amount of traffic within the data center and between that data center and others. This is why there is an urgent need for more data center interconnect (DCI) bandwidth and higher line rates to support these demands.

Operators have a couple of options for meeting DCI traffic demand. One is to increase fiber count and the other is to increase the line data rate. Increasing the data rate is far more common and economical and is accomplished with new bandwidth-variable transponders. Data rate increases may seem like the obvious remedy for boosting DCI bandwidth, but this option brings consequent issues and impairments along the optical path. These issues must be corrected via ROADMs and amplifiers. Although the modulation scheme is the most important aspect to consider when increasing DCI bandwidth, several other factors come into play. Among these are dispersion compensation, error correction, link distance (reach), amplification, channel width, and spectral tilt.

My new article on Lightwave summarizes the challenges and technologies associated with growing DCI traffic through higher line rates, and discusses each of the most important factors to be considered when planning the best way forward. Moving to higher line rates for DCI is an effective and economical way to address continued DCI growth, but a variety of equipment upgrades and new techniques are needed to adequately address new optical impairments and achieve the benefits of higher line rates.

Diversity and Digital Transformation: How Fujitsu Uses Innovation to Improve Inclusion

Fujitsu Network Communications is one of the leading companies in America when it comes to networking technology and solutions. They haven’t just made a name for themselves in tech, however. They’ve also made a huge impact when it comes to diversity and inclusion in the workplace, focusing on initiatives that help balance the makeup of the workforce and ensure all types of people have access to opportunities for advancement and career growth.

Greater Diversity and Increased Inclusion Equals Better ROI

As a diversity and inclusion champion, Fujitsu values the opportunity to enable collaboration and participation from a wide range of people. By making a concerted effort to be inclusive and invite a diverse group into the process, they have become the leader in a digital transformation that is rapidly reshaping the technological landscape. Empowering more people to have input has resulted in solutions that serve a larger group of people and meet a wider range of needs across a larger spectrum of the population, thereby increasing ROI.

Fujitsu is Led By Champions of Diversity

Fujitsu doesn’t simply uphold a general philosophy of inclusion and diversity. They also place leaders at the helm of the company who make acceptance and diversity a priority in hiring, promotion, and all facets of corporate life.

One such leader is Director of ICP and North American Carrier Sales for Fujitsu, Heidi Westbrook. Recently interviewed at the Women in Comms conference in Austin, TX on May 14, 2018, Westbrook explained how Fujitsu’s open work culture doesn’t just impact the machines people work with and the processes they use, but also defines the makeup of the company and the opportunities to which people have access.

As a female leader in a traditionally male-dominated industry, Westbrook encourages women and those who feel in the minority to advocate for themselves at work. She feels that, while self-advocacy is a forced or learned skill, it can also be encouraged by having a network of people around that know your value and are familiar with the unique talents you have to contribute to the organization. Westbrook reminds women that while they absolutely face unique challenges in the workforce, those challenges can be used to make them stronger. For example, women who are mothers and have families at home, she says, can succeed at both, noting that when someone does well at home, they typically do well at work– and vice versa.

A final piece of advice from Westbrook: Have discussions about goals and remember what your talents are, without ever losing confidence in those talents. Women should remember that they are delivering value to the organization because of what they bring to the table, and keep focused on their strong points, no matter what obstacles they face.

Watch the entire interview with Westbrook here: https://www.lightreading.com/business-employment/women-in-comms/fujitsus-sales-director-be-your-own-champion/v/d-id/743119

At Fujitsu, company leaders understand that diversity spurs innovation and leads to more successful digital transformation. By focusing on diversifying the workforce and opening up opportunities to people of all races, genders, backgrounds, and more, the company does important work to create a more open and welcoming world.

Fujitsu Honors Local Teachers and Students for STEM Accomplishments

STEM education (Science, Technology, Math and Engineering) is an interdisciplinary approach to education where students learn science and math-centric fields via hands-on lessons. STEM has become a priority in American schools thanks in part to a critical need for those with the knowledge that STEM education teaches.

Studies show that 80% of jobs in the next decade will require a STEM skill. Unfortunately, the U.S. is lagging behind the rest of the world when it comes to teaching these critical skills. In fact, America ranks 29th in math and 22nd in science skills, and only 16 percent of American high school seniors who are proficient in math are actually interested in STEM careers.

Because of this lag in STEM skills and enthusiasm, Fujitsu Network Communications recognizes the importance of encouraging schools and educators to promote STEM, showing kids both how essential and how fulfilling STEM educational experiences can be.

As one of the world’s leading ICT companies, Fujitsu is well aware of how science and technology education can impact the future of the world. We understand that in order to inspire students, STEM skills need to be championed at every stage of learning: by parents, teachers, schools, mentors, non-profits and businesses alike. In 2010, we established the Fujitsu Teacher Trailblazer Award, an honor given to Richardson Independent School District (RISD) K-6 teachers who successfully integrate creative, innovative uses of technology as part of the instruction process. In 2018, we also began awarding Fujitsu STEM scholarships to graduating seniors from RISD and local alternative schools who plan to enter a two- or four-year college or university to major in a STEM field.

To qualify for the Fujitsu Teacher Trailblazer Award (which comes with a $5,000 prize), an RISD teacher must implement technology as part of the instruction process. They must also use innovative questioning and inquiry techniques to challenge students and harness instructional strategies to actively engage students in the learning process. The Fujitsu trailblazing teacher doesn’t just excel in the classroom, but also seeks out and engages in professional development activities.

This year’s Trailblazer winners are Audrey Leppke, a first-grade teacher at Math Science Technology Magnet School; and Sarah Beasley, a third-grade teacher at Lake Highlands Elementary School. Each received $5,000 personal award to recognize their great efforts.

In order to qualify for one of two $5,000 Fujitsu STEM scholarships, an RISD high school senior must have a minimum GPA of 3.0 and have taken four years of science, technology, engineering and/or math classes with Bs or better. They must also be planning to enter a two- or four-year college or university to major in a STEM field. This year’s scholarships recipients are Adam Gallo and Joshua Harris.

STEM education is a growing priority in America, and Fujitsu has dedicated itself to furthering the cause in the area around its headquarters. By encouraging teachers and students to delve in and learn more about how they can benefit a deeper knowledge of science, math, and technology, we are helping create a larger group of career-ready people who will soon enter the workforce – and spreading the values of STEM subjects to younger generations.

Integrated Laboratory Testing – An Investment that Pays off for Rail Operators

The traditional approach that rail operators have taken to their communications networks is changing to support new IP video, voice and data applications, as well as improved mobile connectivity and stronger cybersecurity. The advent of the flexible converged network is bringing new challenges, one of which is to turn up the heat on pre-deployment testing. Factory Acceptance Testing (FAT) is no longer enough because, while it adequately covers issues relating to individual components, FAT falls short when it comes to identifying issues that arise when multiple system components come together in a fully integrated system.

The answer is to bring system components together and put them through their paces in a controlled laboratory environment before live deployment. For want of a better name, this approach is known as Integrated FAT (IFAT). But setting up a fully capable laboratory and hiring the necessary experts requires significant upfront investment. It’s easy to imagine the level of expenditure needed won’t pay off, but in fact it’s more than justifiable when the cost-saving benefits are taken into account over the longer term.

The simple reason is that integrated testing improves reliability and drastically reduces network downtime, and every minute of downtime is expensive. That’s all there is to it. Discovering and correcting issues before committing to live traffic is far less costly and disruptive than troubleshooting and correction under the pressures of daily operation. Many organizations have no grasp of the costly ripple effects that network downtime has on their business: lost revenue, lost information, damaged reputations and lost customers.

Leaving aside the rewards in terms of reduced downtime, a laboratory outfitted for IFAT brings with it other valuable benefits. Improved cybersecurity is just one of these. Networks are becoming more enmeshed with IT systems, making them more vulnerable to cyber-attack to a degree that cybersecurity has become a critical issue.  For instance, according to the Ponemon Institute’s study, “2017 Cost of Cyber Crime,” the average annualized cost of cybercrime for the transportation industry was $7.36M.

Change control is another area in which lab-based IFAT delivers benefits, in terms of improved reliability and network service quality. Changes equal risk because every change has the potential for unforeseen side effects. For example, imagine you bring up a new circuit between two communication centers and find that application traffic is unexpectedly following an asymmetrical path. Traffic goes out from Comms Center A to Comms Center B on the old circuit, but it comes back on the new one. This is a fairly common scenario—but now there’s a decision to make: Do you try to fix the issue, or back out your change and wait until next month to bring the new circuit into production? What does the change control procedure say? Is there a change control procedure? Will this asymmetrical routing situation even pose a problem?

This is a lot of information to quickly process for an operations tech who most likely does not have a full view of the big picture, and who is running on pizza, Cokes, day-old coffee, and minimal sleep. It is not rare to have an engineer make a small change to fix a routing issue only to cause a major failure. Having a lab facility to duplicate, isolate, make corrections, and develop methods of procedure not only eliminates this risk, but gives your engineers confidence that when they return to the field, everything will go as planned.

Additional valuable benefits of IFAT derive from making full use of the facility as a permanent fixture for ongoing upgrade testing (hardware/software), proofs of concept, staff training, and trouble simulations or disaster recovery drills.

While the transportation industry stands to benefit immensely from advanced networks that can support improved passenger comfort, better real time communication and higher safety standards, the industry needs to go beyond testing components in isolation from one another and embrace deeper and more comprehensive integrated testing in laboratory environments. IFAT offers the best chances of achieving a successful and predictable outcome that avoids costly redesign and troubleshooting during outage operations.

What the NFL Tells us About DCI

Data Center Interconnect has historically been driven by the pressure of simple demand: the kind of demand that’s satisfied by big, fast, dumb point-to-point pipes. But the value and potential of “big and fast” are held in check by “dumb.” It’s like football; bigger and faster will only take you so far in the National Football League (NFL). As game plans get more complicated, players are expected to think strategically about the other team’s offense or defense. Similarly, DCI is also getting more complicated as the pressure builds—and those big, fast pipes must ditch the dumb and get smart.

Data centers already have requirements in place for encryption, streaming telemetry and LLDP, all of which mean adding intelligence. Flex-grid; mixed modulation schemes; the growing mix of baud rates; and multiple FEC options (not to mention mesh connectivity in the planning arena) also demand more “brains” to match the brawn. The challenging task of selecting the optimal modulation, baud, grid and FEC is impossible unless the intelligence is there.

Variable and unpredictable traffic loads add another layer of complexity; business and the internet are inherently chaotic. The historical trend of “designing for the worst case,” (AKA “busy hour design”) is no longer economical. Data centers need capabilities to handle changing workloads gracefully and efficiently without overbuilding. These trends have significant positive implications for DCI; the agility and intelligence needed to meet dynamic workloads will improve the operational efficiency of the whole network. Put simply—bigger, faster, smarter pipes in DCI are just like NFL players who are also strategic thinkers. In both cases, add brains to brawn and the game is on.

Open Networks, Open for Business

For the ICT industry, this nascent era of business models based on cloud computing and OTT content is characterized by a heady brew of innovation, change and growth. Open networking offers service providers a route to much-needed rapid service deployment, agile innovation, and leaner spending. For these reasons, the industry is pushing for open-source standards and transport equipment vendors are capitalizing on this new thinking. Migration is underway from traditional proprietary converged platforms to more modular/single use-case form-factors and functionality.

What is an Open Optical Network?

You might ask, what are the key features of an open optical network? Essentially it boils down to networks operating on an industry-agreed common, multivendor foundation. This includes the ability to have open software and open line systems that comply with open standards for interoperability. In sum, this means a mix-and-match multivendor network environment where all the parts “speak” a common language of control and data exchange.

Open Hardware

Optical networking hardware, such as Reconfigurable Add Drop Multiplexers (ROADMs) and transponders, is evolving in terms of form factor, functionality, and functional disaggregation. Equipment is changing from the large, converged platforms of the past decade to smaller units engineered for single use-cases; simplified network design and operation; efficient space utilization; and lower power consumption. Other essential features of open hardware are plug-and-play or self-installing components; automated provisioning; and software features and interfaces that enable easy integration and meaningful data exchange with different management systems.

Open Software

A notable aspect of open networking is the decoupling of software from hardware development and the transition from proprietary, embedded software to open-source code. Open software should include a single provisioning model with both service activation and service assurance, in addition to a centralized service rollout model. Open software management systems must also be capable of managing third-party systems or tools, and compliant with new standards or initiatives. The network elements must also support open APIs, enabling open management.

Benefits

Perhaps the most obvious benefit from open networking is that service providers are no longer locked in to a specific vendor’s hardware or controller software. When service providers can freely combine equipment from multiple vendors, they have freedom of choice that can directly reduce costs, and when an entire network is managed via common open interfaces and protocols, networks get tested, validated and deployed faster. Moreover, if every part of the network, figuratively speaking, shares a common language, it is easier to eliminate overbuilds or stranded bandwidth. Thus, open networking not only gives providers greater freedom of choice and speed of execution, it helps them to make the fullest use of existing resources. Ultimately, in business terms, this can result in faster service roll-outs.

Another benefit of open networking is that it will ultimately provide a shared technological framework to support innovation. The standards being implemented in the communications network industry are common across the entire IT industry, meaning that service providers have an open invitation to an innovation ecosystem.

Challenges

The primary challenge is successfully navigating the transition from traditional telecom standards to newer open-source standards—not least because the standards themselves are still evolving. “Openness” is not a binary state and the industry must tackle hardware and software components possessing various degrees of openness and interoperability.

On the hardware side, we see everything from closed-and-proprietary paradigms all the way to plug-and-play installation, functional disaggregation, and ultimately, interoperability. Likewise on the software side, we see a similar spectrum, from closed-and-proprietary to open standards, open software platforms, open APIs and ultimately, open applications. Several non-proprietary initiatives are driving open networking forward, including OpenDaylight, ONOS/CORD, ONAP, OpenStack, and the Open ROADM MSA, to name a few.

Conclusions

Open networking is signaling the desire for equipment with a narrower use case and simpler feature sets that enables low-cost and simpler operations. Flexibility, scalability and simplicity are the keys to realizing the potential of the open network.

Open networking supports ecosystem-based innovation and multi-sourcing, which boost cost, competition and supply reliability, while avoiding vendor lock-in and reducing burdensome complexity. Scalable, modular equipment reduces first cost and adds flexible pay-as-you go bandwidth growth, benefiting service providers by broadening their range of capital spending options and timelines. Open networking makes operations simpler and improves service creation and activation times, overall helping to “crack the tough nut” of reducing operational and ongoing costs.

Times, they are a-Changin’ (and the Pace is a-Heatin’ Up)

Three decades is a long time to be in the same industry, even one as historically slow-moving as telecommunications. It’s certainly long enough to become familiar with the typical rate of change. Looking back over my thirty-year telecom tenure, it’s clear that bigger changes are happening at an accelerating pace.

A quick look at how long it takes people to pick up new technologies is enough to prove this observation. By considering technologies that have come to dominate our lives over the past 100 years and examining how long it took each to reach 50 million users, we discover a few interesting things.

Let’s start with the technology that started the communication-at-a-distance revolution: the ubiquitous telephone. It took 75 years for Bell to attract 50 million subscribers after rolling out the telephone in 1876. Then, from the first TV broadcast in 1929, it took a relatively short 33 years to garner 50 million viewers. The World-Wide Web took only four years, starting in 1991, to reach this milestone. More recently Angry Birds, as mentioned elsewhere on this site by Rhonda Holloway, hit the market in 2009 and it took just 35 days for 50 million users to catch on.

With adoption time frames collapsing from almost a century to a little over a month, clearly the pace of adoption is accelerating. But astute readers will point out that I’m not exactly making fair comparisons regarding technology deployments. The first two (the telephone and television) depend on infrastructure deployments that require huge investments of expertise, construction, equipment and time. The second two (the WWW and Angry Birds) are “just software,” which, without seeming disingenuous, is much easier and faster to deploy.

And that is indeed the case; software is in general easier to deploy and the future of networking is not hardware; it’s software. To manage the hyper-connected, always-on, high-bandwidth demands of the Internet of Everything, networks will be forced to evolve in ways that are unimaginable if we keep thinking about operating them in the same hardware-oriented way we always have. The network must become a programmable entity and evolve beyond mere physical infrastructure.

Are your network and your operations capabilities prepared for Angry Birds deployment speed? My next few posts will explain how you can achieve a programmable network, leverage new hardware and software technology advancements and ultimately, implement the disaggregated network of the future.

How Disaggregation is Paving our Path Forward

Abstract background from metallic cubes

The optical networking industry is on the edge of revolutionary change, and while it may sound trite to talk about “the network of the future,” this is what’s approaching in a very real and immediate sense.

Two long-term market trends—industry consolidation and the convergence of IT and networking—have propelled the industry to its first major inflection point in decades. Two technological trends—the software revolution and the disaggregation phenomenon— are taking us forward.

Of these trends, disaggregation is the key to open, agile, plug-and-play networking as we will know it in five years’ time. This is because before we can progress, we have to separate the individual functions and capabilities that comprise today’s tightly integrated hardware systems. Disaggregation is, therefore, not just the latest buzzword. It’s a prerequisite that must be met before we can form an ecosystem of new industry partnerships, and collaborate to rebuild and improve those componentized functions—and add the automation and intelligence that the market’s clamoring to buy.

Fujitsu is shifting the architectural design of its optical networking platforms away from complex, vertically integrated hardware-based structures into a disaggregated architecture. This change will give rise to re-aggregation in the form of economical, generic hardware elements, open-standards software frameworks, and interoperable functional modules. We call this “componentization.”

Once disaggregation has happened, we can drive fast implementation times, simpler development cycles, lower costs, and an overall climate of unprecedented innovation, collaboration, and opportunity not just for the industry itself, but for our customers and their customers as well.

Innovation, collaboration and opportunity—the broad benefits resulting from the disaggregation journey—all grow best in an open, nonproprietary climate. They thrive when the overall environment is flexible, partnership-oriented and fast-paced. And while we’re aware of and prepared for the inevitable transition period of backwards compatibility, we’re committed to taking the first bold steps down the road to disaggregation in fall 2015. It’s an exciting time to be at Fujitsu, an exciting time to be in the optical networking business, and it’s going to get more and more interesting from here.